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(Received 12 July 1974 and in reuised form 2 April 1975) 

Abstract-Gas absorption by a turbulent liquid in the absence of external (gas-imposed) interfacial shear 
is discussed. The primary tool used is dimensional analysis. Two distinct mass-transfer regimes, associated 
with energy-containing and energy-dissipating turbulent motions, are identified. Relationships are 
obtained for each regime, and a criterion, based on the turbulence Reynolds number, is determined for 
the applicability ofeach. The mass-transfer model is evaluated for four flow situations for which turbulence 
data are either available or can be estimated (open-channel flow with and without grid-produced 

turbulence, bubble flow, and jet flow). 

NOMENCLATURE 

solute concentration; 
bulk con~ntration; 
interfacial con~ntration; 
constant of kL. = ki regime, equation (9); 
constant of Levich model; 
constant of large-eddy model; 
constant of small-eddy model; 
constant of kL = kz regime, equation (7); 
molecular diffusivity; 
pipe diameter; 
bubble diameter; 
average percent error; 
factor for transient effects; 
absorption flux; 
overall mass-transfer coefficient ; 
mass-transfer coefficient for dissipative 
regime; 
mass-transfer coefficient for inertial regime; 
macroscale; 
length of mass-transfer section; 
Kolmogoroff length scale; 
mesh size; 
radius of protuberances on jet surface; 
flow Reynolds number; 
turbulence Reynolds number, LV,h; 
critical turbulence Reynolds number; 
sensitivity parameter; 
Schmidt number; 
Sherwood number; 
characteristic time of large-scale motions, 

LIV J2; 
time; 
time of duration of the initial period of 
decay; 
exposure time for mass transfer; 
turbulence intensity; 
bulk velocity; 
Levi&s characteristic eddy velocity; 
relative velocity between bubble and liquid 
or surface velocity; 

K shear velocity; 

UK, Kolmogorolf velocity scale; 

x, Y, Cartesian coordinates, x in direction of 
mean flow; 

x*, length of duration of the initial period of 
decay; 

x0> distance of mass-transfer section from grid; 

I%, turbulence Weber number, V&L/a). 

Greek symbols 

t&T; 
parameter in unsteady transfer analysis, 
equation (B.l); 
penetration thickness; 
rate of viscous dissipation per unit mass; 
microscale; 
3.14159....; 
density; 
surface tension; 
kinematic viscosity. 

1. INTRODUCTION 

THE PROBLEM considered in this paper is the theor- 
etical prediction of mass-transfer coefficients for gas 
absorption by turbulent liquids. In terms of practical 
geometries, a large number of possibilities exist. Mass 
transfer data are now available for own-channel flows, 
bubble flows, jet flows, and film flows. From a funda- 
mental viewpoint, the classical problem of turbulence 
interaction with a “free” gas-liquid interface and the 
implications for mass transfer should be common to 
all. On the other hand, differences in the “structure” 
and “property range” of turbulence would be expected. 
By focusing on individual flow regimes, previous work 
has implicitly emphasized these differences. The 
primary motivation for this study is to exploit the 
similarities, instead. The feasibility of a unified ap- 
proach is thus explored. Open-channel flows, bubble 
(pipe) flows, and jet flows are considered in this paper. 
Film flows are discussed elsewhere [If. 
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2. PREVIOUS WORK 

The role of surface tension in affecting the fluid 

motions within the “interfacial region” and, hence, the 

mass-transfer rates, remains uncertain. Two widely 

different, but yet partially successful, approaches exist. 
The first, due to Levich [2], is based on the concept 
of a surface-tension-damped laminar sublayer. The 

second, due to Fortescue and Pearson [3] and Lamont 
and Scott [4], is based on idealized eddy structures of 

turbulence unaffected by interfacial forces. These eddy 
models, themselves, are in difference. Fortescue and 
Pearson’s “large-eddy” model assumes that the energy- 

containing motions control the transfer process. 
Lamont and Scott’s “small-eddy” model assumes that 
the dissipating motions are controlling. The equations 

for these three models are shown in Table 1. According 

to Levich. the characteristic eddy velocity, V,, which 
is identified with the shear velocity, V,, is utilized to 
characterize the mass-transfer properties of the inter- 
face. For the “small-eddy” model, the rate of dis- 
sipation, E, is needed instead. According to the “large- 
eddy” model, the turbulence intensity, V, and macro- 

scale, L, are the relevant turbulence properties. The 
published recommendations for the proportionality 
constants are also shown in Table 1. These values were 
“calculated” from the detailed physical models postu- 

lated in each case. Only the constant suggested by 

Levich was given as an order-of-magnitude estimate. 
The various model-data combinations previously 
examined in the literature are indicated in Table 2. 
Details on these applications and the quantitative 
aspects of the comparisons are deferred until a latter 

portion of this paper. 

Table I. Comparison of mass-transfer models 

Open-channel 
flow 

Theory Brown [7] 

Levich 
k, = CL(DpV;/c+!2 with V, = K 
CL = 0.32 CL = 1.6 
Davies [25] E = 18% 
CL - O( 1) S = 0.81 
Levich [2] 

Small-eddy 

KL = Cs,(,/D)(~/v)r’~ with E = V3/L 

CSE = 0.4 CSE = 0.22 
Lamont andScott [4] 
CSE = 0.196 E = 15% 
Prasher [23] S = 0.48 

Laree-eddv 
kL =’ CLE j(D V/L) c,e = 1.0 
CLE = 1.07 
Brown [7] E = 22% 
CLE = 1.46 
Fortescue and s = 0.02 

Pearson [3] 

Present model 
Cum = 0.25 
C,MA = 0.73 

Equations (7) and (9) E = 10% 
S = 0.81 

_ 

Bubble flow 
Lamont and 
Scott [4, 8,9] 

with V’ = K 
CL = 3.2 
E = 48% 
s = 1.7 

with E = VA/L 

c,, = 0.30 

E = 167, 
s = 1.2 

CLe = 0.64 

E = 13”” 

S = 0.98 

C ,MA = 0.63 
E = 11% 
s = 0.97 

Open-channel 
flow with grids 
Fortescue and 
Pearson [3, lo] 

Water jets Kerosene jets 
Davies and Ting Davies and 

t-11,12] Hameed [ 13,141 

Data set 

with V, = V 
cr. = 88 
E = 33% 
S = 2.4 

with V. = V, 
C,. = 0.32 
E = 15% 
S = 0.81 

- 

3dV’ 
withE= --- 

2 dt 
CSE = 0.56 

3dV2 
withE= -~- 

2 dt 
Css = 0.24 

E = ll”/, E = 2376 
s = 1.4 S = 0.63 

CLE = 1.1 

E = 4”/, 

S = 0.82 

CLE = 0.55 

E = 25% 

s = 0.59 

with V, = V, 
CL = 0.20 
E = 24% 
S = 0.67 

withE= -3% 
2 dt 

CSE = 0.34 

E = 39% 
s = 0.54 

C&c = 0.73 

E = 40% 

S = 0.52 

C ,MA = 0.85 C,MA = 0.50 C ,MA = 0.66 
E=4”/:, E = 26% E=41% 
S = 0.92 S = 0.58 s = 0.51 

Table 2. Model-data combinations previously examined 

Data set 

Theory 

Levich 
Small-eddy 
Large-eddy 

Open-channel 
flow with 

Open-channel Open-channel Bubble flow grids Water jets Kerosene jets 
flow flOW Lamont and Fortescue and Davies and Davies and 

Bieber [22] Brown [7] Scott [4] Pearson [3] Ting [ll] Hameed [ 131 

X 
& 

$1 cc1 

[31 X X 
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3. ANALYSIS 

The essential difficulty in the “eddy” models is with 
the arbitrary and conflicting assumptions regarding 
the group of motions controlling the transfer process. 
The principal goal of this section is to reconsider these 
differences by deducing the range of applicability for 
each model. Dimensional analysis is utilized to recover 
the “small-eddy” and “large-eddy” results and to in- 
corporate transient (entrance) effects in the formulation. 
In this manner, the proportionality constants are not 
tied to a specific, postulated, flow microstructure. 
Instead, they are determined from the experimental 
data in an optimal fashion. Since the uniformity of 
these constants among different physical flow systems 
provides a measure of the success of the sought funda- 
mental model, spurious differences are eliminated by a 
consistent estimation of turbulence properties and an 
explicit accounting for entrance effects. 

The magnitude of the turbulence Reynolds number, 
based on intensity and macroscale, provides a measure 
of the degree of independence between the “large-scale”, 
energy-containing motions and the “small-scale”, dis- 
sipative ones. For Re, = LV/v >> 1, the equilibrium 
range exists, and its statistical behavior is determined 
[5] solely by the rate of dissipation per unit mass, E, 
and the kinematic viscosity, v. These physical par- 
ameters provide the natural length and velocity scales 
in this range: 

. 

The dissipation rate may be expressed in terms of the 
characteristic length and velocity scales of the energy- 
containing motions through the empirical formula [6] : 

V3 
EZ.- 

L 
(2) 

where V is the turbulence intensity and L is the macro- 
scale of turbulence. From these relations the scale 
“separation” between the two groups of motions may 
be obtained as : 

1K - = Recm 3/4. 
L 

Similarly, the “separation” between the characteristic 
times of the large-scale and small-scale motions (L/V 

and ~K/uK, respectively) is given by: 

LIV - = Rq?l=. 
lKh 

Assuming, as was done in the turbulence-centered eddy 
models, that the turbulence-interface hydrodynamic 
interaction is “similar” for both groups of motions, the 
following deductions may be made: 

(a) The high Schmidt number mass-transfer process 
is also “similar” for both groups of motions. More 
specifically, the small-penetration (as compared to the 
scale of the motion) character of the energy-containing 
eddies is also found in the small, dissipative motions: 

6 
-N 4sc-“2. 
IK 

(5) 

(b) The characteristic times L/V and IK/uK may also 
be viewed as effective renewal times for the motions 
in the vicinity of the interface. Equation (4) then 
indicates that for Ret >> 1, the small-scale motions are 
by far more effective in transferring mass across the 
interfacial region than the large-scale ones. Hence, for 
Re, >> 1, kL = kf where kf is the mass-transfer coefficient 
determined from the small-scale motions alone. When 
the condition Re, x 1 is not satisfied, the universal 
equilibrium range is not developed, and kL = ki where 
ki is the mass-transfer coefficient determined from the 
energy-containing motions alone. 

(c) In the ki regime, entrance effects are determined 
from the ratio of the exposure time for mass transfer, 
t cxp, and the characteristic time of the large-scale 
motions, L/V. When this ratio is much larger than one, 
entrance effects are negligible. In the ke regime, inter- 
action effects with the large-scale motions may be 
viewed as “entrance” effects for the small-scales. The 
large scales convect the small scales without appreci- 
ably distorting them as seen from equation (3) for 
Re, >> 1. Small scales brought up to the interface ex- 
perience an exposure time of L/V and their character- 
istic time is lK/uK. As may be seen from equation (4) 
this ratio is Ret”’ >> 1, and interaction effects are 
negligible in this regime. 

For the Re, >> 1 mass-transfer regime, kf should 
depend only on the local viscous dissipation rate per 
unit mass, E, kinematic viscosity, v, and molecular 
diffusivity, D. Dimensional analysis yields: 

Experimental and theoretical studies concur that for 
high Schmidt number processes at zero-shear inter- 
faces, kL cc D”‘. Thus : 

l/4 

for Re, >> 1. (7) 

For ease in reference, we designate this result as “UET” 
(Universal Equilibrium Theory). The constant of pro- 
portionality, CuET, is a universal constant independent 
of the particular geometry and other macroscopic 
variables of the system. 

For the low_Rei mass-transfer regime, ki should 
depend on the length and velocity scales of the energy- 
containing motions, L and V, the molecular diffusivity, 

D, and texp, which characterizes the entrance effects. 
Dimensional analysis yields: 

Requiring ki cc D”’ as before: 

for Re, not >> 1 (9) 

with 

2i’=t a=exp. 
w 

(10) 
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For ease of reference, this result is termed “IMA” 
(Inertial Motion Approximation). The constant, CIMA, 
is not expected to be universal due to greater sensitivity 
of the large-scale motions to macroscopic flow details. 

It is hoped, however, that it will prove to be only weakly 

dependent on the shape of the energy spectrum at small 
wavenumbers. The function F(x) decreases monoton- 
ically and approaches 1 asymptotically as t( + co. An 
estimate of this function is provided by recourse to a 

specific eddy model. The derivation for steady turbu- 
lence conditions is given in Appendix A. The more 
general case for time-varying length and velocity scales 
is presented in Appendix B. 

Since the ranges of applicability of the IMA and the 
UET are related to the magnitude of Re,, there is an 
intermediate range of Re, for which these asymptotic 
results are not precise. An order-of-magnitude estimate 

of this transition region may be obtained by extending 
these asymptotic results to obtain an abrupt transition. 
This transition Ret-value is denoted by Ret* and is 
estimated by 

(11) 

With the values of the constants determined in the 

next section, this value of Ref is in the range of a 
few hundred. This would imply an order-of-magnitude 
separation in the characteristic times, and two orders- 
of-magnitude separation in the scales, between the 

energy-containing and dissipative motions. 
The possibly strong directional structure of tur- 

bulence was not included in the above formulation. 
The principal difficulty that arises is with regard to the 
“appropriate” choice of L and V and its implication 
for the constants Cnnr and CIMA. For the IMA, the 
choice of L and V in the direction of the mean flow 
appears appropriate, and it should be expected that a 

different partition of turbulence energy (as might be 
dictated by the detailed dynamics of the flow system) 

would be reflected as small variations in the values of 
CIMA. The same choice, however, for the UET would 

commonly lead to an overestimation of the dissipation 
rate [as calculated by equation (2)], and, hence, would 
yield an underestimation of Cum as compared to its 
true universal value. A “mean” intensity averaged over 

all three directions would represent an improvement. 

The sensitivity to the accuracy of L is only minimal. 
However, the true local (in the vicinity of the interface) 
dissipation rate should be utilized when available. 

4. APPLICATIONS 

Evaluation of the model depends on the accuracy 
with which the quantities L and V are known or can 
be predicted. Brown’s [7] work represents the only 
mass-transfer study with simultaneous measurements 

of the hydrodynamic quantities L and V. Since tur- 
bulence in pipe flow has been studied extensively, the 
L’s and v’s for the mass-transfer data of Lamont and 

Scott [4, 8,9] for discrete, widely-separated bubbles 
transported in turbulent pipe flow may also be con- 
sidered known with confidence. These two sets of data 

will be employed to evaluate the transition criterion, 
Re:, and the constants in equations (7) and (9). Two 

flow systems will then be considered for which the 
requisite turbulence characteristics are not known and 
must be estimated. These are the data of Fortescue 
and Pearson [3, lo] for decaying turbulent flow behind 

a grid in an open channel and those of Davies and 
coworkers [ll-141 for turbulent water and kerosene 
jets. The comparisons are presented separately for each 
one of the cases considered in terms of the “predicted” 

vs “measured” mass-transfer coefficient. 

4.1. Systems with known turbulence churacteristics 
For reference, the most important characteristics of 

these experiments are presented in Table 3. The tur- 
bulence Reynolds numbers obtained in Brown’s exper- 
iments with open-channel flow are very large and 
extend well above the previously-suggested value for 
Re: of a few hundred. The values of Re, in the exper- 
iments of Lamont and Scott, on the other hand, are 

well below this criterion for transition. 

Table 3. Important characteristics of mass-transfer experiments with known 
turbulence properties 

Experimental 
conditions 

Description of flow 

Absorbing system 

Characteristics of 
physical system 

Type of turbulence 

Range of flow 
Reynolds number 

Range of turbulence 
Reynolds number, Re, 

Range of kL, 
(cm/s) 

Brown [7] 

Open-channel flow 

02-water 

Channel width: 6 in 
Water depth: 3 and 6 in 

Shear-generated and steady 

4Rn v 
46400 < __ Q 92800 

Y 
RH = hydraulic radius 

12883940 

3.4 x 1o-3 to 7.3 x 10-j 

Lamont and Scott [4,8,9] 
____- 

Bubble flow 

CO,-water 

Pipe diameter : & and 3 in 
Flow orientations: horizontal 
and vertical 

Shear-generated and steady 

1810-22400 

4.25-38.4 

1.0 x 10-z to 7.4 x lo-* 
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4.1.1. Open-channelpow. The experimental measure- 
ments of Brown [7] were carried out in a small flume 
equipped to recirculate the flow. Experimental vari- 
ables included the depth of the flow, velocity, bottom 
roughness, water temperature, and the surface area 
exposed to the solute gas. Brown accounted for the 
spatial variation in the turbulent nature of the flow in 
the channel by dividing, conceptually, the surface area 
into compartments. In the center of each compartment 
the instantaneous longitudinal velocity near the free 
surface was measured and recorded, and the macroscale 
and the turbulence intensity were then calculated. 
These quantities were utilized as the Z_. and V in this 
application. Assuming Re: = 500, Brown’s mass- 
transfer data were predicted according to the present 
model by calculating the local kL’s (for each one of the 
compartments). If the local Re, > Re:, kL was cal- 
culated from equation (7); if the local Re, < Ref, kL 
was calculated from equation (9). The local kL values 
were then area-averaged, and the best values of 
CUE* = 0.25 and CIMA = 0.73 were determined by 
minimizing the sum of the squares of the deviations 
between the measured and predicted mass-~ansfer 
coefficients. In carrying out the calculations based on 
equation (9), it was found that transient absorption 
was confined to the compartments nearest the entrance 
of the channel. In evaluating u’s for these compart- 
ments, tevp is given by the length of a compartment 
divided by the average surface velocity of the liquid 
within the region. Predicted increases in the local mass- 
transfer coefficients due to transient absorption for 
compartments nearest the entrance of the channel 
(having Re, d Ref) are of the order of 30%; but the 
total surface-area fraction of these compartments is 
small, thereby resulting in an inconsequential increase 
in the overall kL. 

A measure of the sensitivity of a particular mass- 
transfer model to the parameters governing the mass- 
transfer process is provided by the slope of the “least- 
squares” line through the points on a plot of the pre- 
dicted vs measured mass-transfer coefficient. This sensi- 
tivity parameter, denoted by S, has a value of 0.81 for 
the results shown in Fig. 2. It is informative to note 
the effect of varying Re: on the calculated values 
of S. If one assumes Re: = 0 (all mass transfer 
governed by the UET), S = 0.48. S increases to an 
essentially constant value of about 0.8 for 300 6 Re: < 
700. Assuming Ref = 1000 gives S = 0.48, and for 
Re: = OD (equivalent to assuming all mass transfer 
governed by the IMA), S = 0.02, similar to that for the 
large-eddy model. This lack of sensitivity is graphically 
shown in Fig. 3. The average error in the predictions 
from the present model remains at about 10% for 
300 < Re: 6 700 and increases for Re: outside this 
range. These considerations provide an experimental 
determination of the range of the parameter, Rer, 
which is in excellent agreement with the range deduced 
previously. 

4.1.2. Bubblepow. The investigation of Lamont and 
Scott [4,8,9] considered the absorption of gas from 
bubbles transported in turbulent pipe flow of water for 

I_ ’ ” ’ ’ ’ ” ‘1 0 01 02 0.3 04 05 06 07 08 09 10 

a*t,/T 

FIG. 1. The function F(a) as defined in equation (A.6). 

Measured k, x 104 cm/s 

FKI. 2. Comparison of the results of the present 
model (with CUET = 0.25, CIMA = 0.73, Re: ‘= 500) 

with the data of Brown [73. 

S- 

7- 

#n 

2 6- 

Measured k, x IO”, cm/s 

FIG. 3. Comparison of the results of the large- 
eddy model (with CLE = 1.0) with the data of 

Brown [73. 

both hori~ntal and vertical orientations. For the range 
of Reynolds numbers of Lamont and Scott’s investi- 
gation, the integral length scale of turbulence, L, in 
the central region of the pipe is known [15] to be 
about O.O3d, where d is the pipe diameter. The tur- 
bulence intensity, V, in the core of the pipe is known 
116-j to be approx~ately equal to the shear velocity 
(from the Blasius relation, K = 0.2vRe7/*/d). From 
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Table 3, the Re, values for this physical situation 
indicate that the energy-containing motions, not the 
energy-dissipating motions, should control the gas 
absorption rates. This explains why the result based 
on Lamont and Scott’s “small-eddy” model, kL CC 
RcT’.~‘, is in disagreement with the experimental data, 
represented by kL cc Re0.52. To evaluate the transient 
effects for the prediction of kL by the present theory, 

t exp is calculated as d,/V,, where ds is the bubble 

diameter and K is the relative velocity between the 
bubble and the liquid in the core of the pipe. Bubble 

diameters ranged from about 0.3 to 0.7 of the pipe 
diameter, and in the calculations, a value of ds/d = 0.5 
was used. For the horizontal bubble flow [9] the ratio 

of the bubble velocity to the velocity of the total 
volumetric flow ranged from approximately 0.95 for 
small bubbles (de/d = 0.36) at Re = 1400 to 1.18 for 
large bubbles (ds/d = 0.65) at Re = 26000. It can be 

shown that, for the horizontal flow conditions em- 
ployed by Lamont and Scott, the transient effects on 

kL are insignificant. This is not the case for the vertical 
orientations. For this case V, was taken to be the wall- 

free terminal velocity of the bubble, as calculated 
according to Peebles and Garber [ 171. This approach 

is consistent with the results of Baker and Chao [18], 
who found the bubble relative velocity in a turbulent 
water stream to be similar to the rise velocity of single 
bubbles through a quiescent liquid. Values of F(a) cal- 

culated from Lamont and Scott’s vertical flow condi- 
tions range from 1.04 to 1.49. 

The results of the present model are compared with 
the experimental data in Fig. 4. The best value for 
C IMA was found to be 0.63. The sensitivity parameter, 

S, is 0.97, and the average error is 1 l”/o, indicating good 

agreement between prediction and experiment. 

4.2. Systems with unknown turbulence characteristics 
For reference, the most important characteristics of 

these experiments are presented in Table 4. The tur- 
bulence Reynolds numbers for both Fortescue and 
Pearson’s grid flow and the jet data of Davies and 
coworkers are low, indicating that the large-scale 

0 , 2 3 4 5 6 7 8 

Measured k,x IO’, cm/s 

FIG. 4. Comparison of the results of the present model (with 
C IMA = 0.63) with the data of Lamont and Scott [4,8,9]. 

motions should control the transfer process. In these 
systems, the turbulence macroscales and intensities are 
not known but may be estimated by employing the 

concepts of decaying turbulence. 
4.2.1. Open-channel, grid-produced turbulent flow. 

Fortescue and Pearson [3, lo] measured CO2 absorp- 
tion rates in decaying, turbulent water flow down- 
stream of a grid in an open channel. For this flow 

system the turbulence properties are a function of 
position over the absorbing surface. In Appendix B, 
it is shown how the local stagnation-flow gas absorp- 
tion flux,j(t; /?), may be utilized to incorporate transient 
effects for this more general situation. The pro- 
portionality constants in this derivation are chosen 
so that the result equals that for the IMA, equation 

(9), for the case of steady-state mass transfer in a flow 
with a uniform distribution of turbulence properties. 
The final result for the average mass-transfer coefficient 

is 

kL = 
2”4C IMA 

ks - 4Lxp 

X s r’““1/2{j(t;fl=1)+j(t;P= -1))dt. (12) 
0 

Table 4. Important characteristics of mass-transfer experiments with estimated turbulence properties 

Experimental conditions 
Fortescue and Pearson 

[3,101 
Davies and Ting 

r11,121 
Davies and Hameed 

[13,143 

Description of flow 

Absorbing system 

Characteristics of 
physical system 

Decaying flow downstream 
of a grid in an open channel 

CO,-water 

Channel width: 1 ft 
Channel length: 2 ft, 3 in 
Water depth: 1.5-2.0in 
Mesh size: 5/16-5/g in 
x0 = 10 and 18cm 

Liquid jet exiting into gas 

COZ- and HZ-water COZ-, HZ- and He-kerosene 

Nozzle diameters: 0.102, Nozzle diameters: 
0.132, 0.1512 and 0.130, 0.1296 and 0.162cm 
0.162cm 

Type of turbulence Grid-generated and 
decaying 

Shear-generated and decaying 

Range of turbulence 
Reynolds number, Re, 

Range of kL (cm/s) 

2.3-l 13 3.9-37 1.8-20 

1.3 X 10-3 to 2.7 X 10-J 2.3 x 1O-2 to 1.7 x 10-l 2.5 x 1O-2 to 4.9 x IO-’ 
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Expressions for the j(t; /I) are derived in Appendix C. 
In these experiments the water level in the test section 
was maintained at 1.5 to 2.0 in. A mean value of 1.75 in 
was utilized in all computations. Transient absorption 
is evaluated with V, = 1.2 p, and its contribution is 
found to be about 25% of the total mass transfer. 

The comparison of these results with the exper- 
imental data is given in Fig. 5. The best value of 
Cm, for these data is 0.85. 

Llquhd: water 

Gas: CO2 

25_ Symbol M.in x,.cm 

IS 20 2s 

Measured k, x IOf cm/s 

FIG. 5. Comparison of the results of the present model 
(with C,,, = 0.85) with the data of Fortescue and Pearson 

[3,101. 

4.2.2. Jet flows. Davies and coworkers have investi- 
gated the turbulent mass-transfer characteristics of 
both water [ll, 121 and kerosene [13,14] jets. They 
employed the basic Levich postulate that the “dynamic 
thrust” of an eddy at the free interface is balanced 
by the excess surface pressure associated with the 
deformation of the surface by the eddy: 

20 
pv,” =x’ (13) 

It is interesting that even though Davies and Hameed 
[13,19] point out that R increases rapidly downstream 
of the nozzle opening and reaches a value at the test 
section exit about 10 times that in the vicinity of the 
nozzle, they still take V, to be constant and equal to 
the shear velocity, K, within the nozzle. From the 
measurements of Davies [19], R % t”‘, so from equa- 
tion (13), the local V, % t-li4. For the Levich theory, 
the mass-transfer prediction based on these local values 
of VO, kt % Re31s, is in significant disagreement with 
the experimental data, which are described by 
kL % Re’.3. 

In the present analysis, a characterization of the 
turbulence structure in the jet is provided by employing 
the same turbulence concepts which have described 
the fluid mechanics for flow downstream of a grid. 
The decay first follows the law of the “initial period”, 
while for larger distances downstream, the energy 
decreases more rapidly and ultimately obeys the law 
ofthe “final period”. A relatively short transition region 

separates these two periods of decay. The rate of 
decrease of kinetic energy during the initial period is 
given by: 

dV2 V3 
--_g-_ 

dt L’ 
(14) 

The time scale for the energy decay, then, is 

v2 L T 

dV2 ?= 

i-1 

(15) 

dt 

which shows that the length of duration of the initial 
period, t*, is of the order of a few characteristic times 
of the energy-containing eddies. This order-of-magni- 
tude analysis is substantiated by the experimental data 
of Batchelor and Townsend [20] and Batchelor [6] for 
flow downstream of a grid. These data indicate that 
5 T6 t* 5 15 T, where T is the characteristic eddy time 
during the early stages of decay. A median value of 
t* = 10 T is utilized here. 

The jet is taken to move in the positive x-direction 
with the bulk velocity, i? The initial period of decay 
is characterized by 

V-’ = C,(t-t,) and A2 = lOv(t-tr) (16) 

where t = x/v, tl and Ci are constants, and 1, the 
microscale (or dissipation length scale) of turbulence, 
may be related to properties of the energy-containing 
motions by 

12 10 
-=-, 
L2 Re 

(17) 
f 

The constants are determined by requiring continuity 
of L and V at x = 0 to yield, 

V= V(x=O){l+$+~L’2 (18) 

L=L(x=0)(1+$=J)L’2. (19) 

The L(x = 0) and V(x = 0) were evaluated from: 
L(x = 0) z 0.03d and V(x = 0) 2 K as before. For the 
purposes of the mass-transfer calculations, the inter- 
mediate region between the initial and final decay 
periods will be neglected. The final period of decay 
will be treated as beginning at x = x* = lOvL(x = O)/ 
V(x = 0). It is characterized by 

V-’ = C2(t-t2)5i2 and 1’ = 4v(t-t,) (20) 

where C2 and t2 are constants. It can be shown that 
for the final period, I = J(2/n)L. The constants C2 
and t2 are determined by requiring continuity of L 

and V at x = x*. The results are: 

v = v(x*)L(x*y p/4 

(27rv)5’4 

[ 

x_x* + L(x*yP 5’4 
(21) 

2m 1 
27rv II2 

L= -7 (>[ L(x*)ZV 1/Z 
x-x*+----- 

2rrv I 
(22) 

From equations (18)-(22), the range of Re, for the 
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conditions employed by Davies and Ting is found to 
be 3.9-37, indicating that the large-scale motions 
dominate the mass-transfer process. The average mass- 
transfer coefficient is given by 

21’4C 

1s 

t* 

kL = 
IMA 

(c, - Cbhxp 
f[.L@; B = 1) +j&; B = - 111 dt 

0 

s 

L, 

+  3[j&;B = l)+M;P = -1)ldt WY L* 

The stagnation-flow absorption fluxes for the initial 

period, j, , and final period, jF , are given in Appendix D. 

Ltautd: water 
NOZZle 

Symbol dkcm Length.cm Gas 

20 

0 5 10 -15 

Measured k, x 10: cm/s 

FIG. 6. Comparison of the results of the present 
model (with CIMA = 0.50) with the data of Davies 

and Ting [ll, 12-J. 

Liquid: kezzyt 

Symbol d~ia.,j”m Laycm Gas 
0 

0.13 0.13 : 

0.13 6 
0.13 6 
0.13 4 

0.13 6 

$13” : 

0.162 6 
0.162 6 
0.162 
0.162 8” 

Symbol dlo..cm Len#hcm Gas 
oJ62 6 H, 
0.162 4 H, 

CO2 

Measured k,x IO’, cm/s 

FIG. 7. Comparison of the results of the present model 
(with C,,, = 066) with the data of Davies and Hameed 

[13, 14-J. 

For the water data, the best value of the constant, 

c IMA> was found to be 0.50 with an average error of 

26% and a sensitivity parameter of0.58. The calculated 
kL’s based on the present model are compared with the 
experimental results in Fig. 6. The calculated results 
were found to be insensitive to the location of x*, 
which separates the initial and final periods of decay. 

For example, calculations with x* = pL(_x = O)jV’(x = 0) 
gave somewhat lower kL values, but with virtually no 
change in the sensitivity. Transient effects contributed 
up to 137: of the total absorption. 

For the experimental conditions of Davies and 
Hameed, who used kerosene (a Y 30dyn/cm), Re, was 
1.8-20; hence, the IMA also applies here. On following 

the same procedures employed with the water jet data, 
the best value for C IMA was 0.66 with an average error 
of 41”/, and a sensitivity parameter of 0.51. The cal- 
culated kL’s are compared with the experimental results 
in Fig. 7. Transient contributions amounted up to 177; 

of the steady-state values. 

4.3. Comparisons of’ present and previous models 
Predictions from the Levich model, the large-eddy 

model, and the small-eddy model are compared with 
the results of the present model in Table 1 for the five 

sets of data from widely-differing flow systems. In 
order to compare models on the same basis, the least- 
squares values of the constants CL, CLE and CSE are 
presented together with the average percent error, E, 

and the sensitivity parameter, S, for each data set. The 
constants CL, CLE and CSE given in the first column 

ofthis table are those suggested by the original authors. 

The choice of the “appropriate” turbulence properties 
for each one of the models involves several supposi- 
tions, especially for cases that are quite different from 
those for which the models were originally constructed. 

(a) Levich’s model was originally presented for thin, 
vertical, falling, liquid films. The characteristic velocity, 
V,, was identified with the shear velocity, I/.. Next, 

Davies and Ting made the same choice, but with K 
calculated at the exit of the nozzle. A more consistent 
choice would have been Vo(t) = V(t), since Vo(t = 0) = 
K 2 V(t = 0). This choice is also made for the grid- 
produced turbulence of Fortescue and Pearson. For 
the bubble (pipe) data of Lamont and Scott, it turns 
out that this same choice is also in agreement with the 
original specification, since I/. z V for the core region. 
The same is also approximately true for Brown’s 
experiment, since V, z V near the free interface. 

(b) For the small-eddy model, the key question is 
whether to use local or total dissipation. The orig- 
inators of the model applied it in terms of total 
dissipation [4]. For the largely non-uniform viscous- 
dissipation distribution in turbulent shear flows, this is 
not representative of the processes near the important 
interfacial region. An estimate of local dissipation is 
possible through equation (2). Such an estimate is con- 
sidered preferable and is applied to the data of Brown 
and Lamont and Scott. For decaying turbulence, the 
estimate of dissipation based on E rr V”iL is not 
accurate in the final period (due to the continual 



Turbulent mass transfer with applications to open-channel, bubble and jet flows 621 

na~o~ng of the overall wave number range which 
leads to viscous effects pr~om~ating the decay). Thus, 
a local dissipation estimated from the decrease of the 
kinetic energy of turbulence (as prescribed from the 
decay laws) is utilized. 

By proceeding across a row corresponding to a given 
model in Table 1, one may assess its ability to predict 
transfer rates for the different data sets. In particular, 
the variation in the value of the constant required to 
give the best fit is an essential characteristic of the 
model’s validity-the smaller the variation in the 
constant, the more reliable is the model. Proceeding 
down a column for a given data set provides insight 
into the di~eren~s in predictive capability between the 
various models. For the data sets of Brown and Lamont 
and Scott, for which the turbulence properties are 
known, the present model provides the lowest average 
error and the best sensitivity to the experimental con- 
ditions. The values of C,,, required to give the best 
fit are very consistent, varying only by 7% from the 
mean of 0.68. The results obtained for the data sets of 
Fortescue and Pearson and Davies and coworkers are 
limited by the accuracy with which the requisite tur- 
bulence parameters, L and V. can be estimated. In both 
cases, the theory of decaying, homogeneous turbulence 
cannot be expected to provide more than an order-of- 
magnitude estimate for these parameters. Even so, the 
values of CrMA are “consistent” with those from the 
previous data sets with known properties, and the 
average error and sensitivity obtained are acceptable. 
As might be expected, the large-eddy model does a 
good job in ‘“predicting” the data of Fortescue and 
Pearson. Even in this case, however, the present model 
achieves a finite improvement, since by taking into 
account transient absorption, the constant comes more 
in line with values determined from other data sets, 
and a better sensitivity is achieved. Furthermore, it is 
not quite clear whether the decaying turbulent.field of 
Fortescue and Pearson was completely free of shear- 
generated turbulence augmentation near the interface 
originating from the bottom of the relatively thin 
stream. Such an effect, if present, would explain the 
somewhat larger-than-expected estimated value of CIMA 
for these data. 

mass-transfer predictions for the smali-eddy model 
(with E = V3/Q the large-eddy model, and the present 
model could not be carried out. Calculations for the 
Levich model with Ve = K give CL = 7.6, E = IS%, 
and S = 1.2. This value of CL is in marked disagree- 
ment with the CL value of 1.6 deduced from the open- 
channel data of Brown. 

Davies and Hameed [13] concluded that the damp- 
ing of the bulk turbulence in the liquid jets was due 
primarily to surface tension forces rather than bulk 
viscous forces. However, calculations based on equa- 
tion (13) and the measured [19] variation of R show 
that viscosity should be more effective in damping the 
bulk turbulence [21]. This conclusion is also supported 
by the consistency of the liquid-jet mass-transfer pre- 
dictions summarized in Table 1 for the present model. 
In addition, mass-transfer predictions based on the 
Levich model with Vo(t) = V(t) (which characterizes 
the viscous damping of the bulk turbulence) are far 
superior to those based on V0 = V, (as assumed by 
Davies and coworkers) and &(t) & t-*j4 [as indicated 
from equation (13) and the measured variation of RJ. 

Since the turbulence properties L and I/T were not 
measured for the open-channel flow of Bieber [22,23], 

5. ASSESSMENT OF SURFACE TENSION EFFECTS 

If surface tension is considered to be an important 
variable in the mass-transfer process, dimensional 
analysis indicates that 

Sk = - = f (Se, Re,, Wet) 
D 

where an additional dimensionless group, the tur- 
bulence Weber number, We, = VJ(pL/g)), also appears. 
Here, the steady-state mass-transfer process is con- 
sidered for simplicity. As before, we have : 

kL = f(Re,, We,) y (25) 

where f is an unknown function. For the time being, 
let us suppose that f(Re,, We,) 2 g(Re,)k( We,), which 
is a functional form widely used in empirical modelhng. 
We then obtain : 

(Dv)“’ 
kr. = WfWg(R4 L. (26) 

If it is assumed, as indicated by the previous develop- 
ments, that g(Rs,) N Cl Re:” for Re, 5 Re,Q and 
g(Re,) N CzReti4 for Re, R, Ref, where C1 and Cz are 
constants, we have 

DV “’ 
ki = Cl h( We,) L for Re, 2 Ref (27) 

kL = 

; 

( > 
p73 114 

kf = C~~(We*~D’l’ ;E: 
i 1 

for Re, z Rej’. (28) 

Comparison of equation (27) with equation (9) and 
equation (28) with equation (7) indicates that 

C IMA - Cl W+‘e,) ami GET - G h@%). (29) 

These equations demonstrate that the constants CIMA 
and Cum are functions of surface tension, but only as 
it occurs in the dimensionless group, We,. For the cal- 
culations presented in the previous section, the range 
of We, extends over three orders of magnitude, with 
negligible variation in the deduced values of CiMA. 
This indicates that &@A is only a weak function of 
surface tension. A comparison of the ranges of Re, and 
We, for the experiments is given in Table 5. It is 
probable that the dependence of CUET on u is also very 
slight. However, the range of We, encountered in 
Brown’s experiments covers only about one order of 
magnitude, so a more precise determ~ation of the 
nature of the dependency of Cu,, on Wet must await 
further experimental and/or theoretical results. An 
hypothesis, formulated from the above considerations, 
may be stated as: for turbulent flows in which the 



622 T. G. THEOFANOUS. R. N. HOLJZE and L. K. BRUMFIELD 

Table 5. Ranges of turbulence Reynolds and 
Weber numbers 

Data set Re, Range wet Range 
._ 
Open-channel flow. 

Brown [7] 

Bubble Bow, 
Lamont and Scott [4,8,9] 

Grid-produced turbulence 
Open-channel flow, 
Fortescue and Pearson 

[ntO] 
Jet flows: 

water, 
Davies and Ting [l 1,121 

kerosene. 
Davies and Hameed 

[13,14] 

128-3940 0.13-1.48 

4.3-38 0.024-0.29 

2.3-113 0.0032-0.20 

3.9-37 0.025-0.59 

1.8-20 0.026-0.92 

inertial motions control the mass transfer, kL should be 
independent of g (at least for 0.001 4 We, 2 1) and 
depend only on the “bulk” turbulence properties, L 
and I/, in the manner specified by equation (9). 

6. CONCLUSIONS 

A turbuIence-entered model appears capable of 

describing mass transfer rates at gas-liquid interfaces 
found in open-channel flows, bubble (pipe) flows, jet 
flows, and film flows. Surface tension effects are not 
likely to dominate the process. Yet, it would be 
desirable to incorporate corrections for such effects in 
the present model. Additional mass-transfer data cover- 

ing wider ranges of surface tension and turbulence 
Reynolds number are needed for this purpose. Such 
data in the high turbulence Reynolds number range 

(more than a few hundred) are also needed to explore 
further the existence of the two mass-transfer regimes 

proposed here. This concept is presently fully sup- 
ported by the data of Brown, which comprise the only 
applicabte experimental information available. 
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APPENDIX A 
Unsteady Mass Transfer in Eddy Models (with Constant 

Length and Velocity Scales) 

Unsteady mass transfer into the large eddy is analyzed 
by taking the velocity field to be that of the Fortescue- 
Pearson [3] roll cell. At time t = 0, the eddy is exposed and 
participates in the mass transfer process until time t = tarp. 
The mathematical problem to be solved, then, is 

c=cb at t=O 

C=cb at y-J: 

c = c, at y = 0, t > 0. 
Y A solution of the form c = c(q), where ‘1 = - 

XX, 0 ’ 
is sought: 

-&It = DC” 64.2) 
and 

1 d(P) v, . RX t?(P) 75% 
2r+-i-smL~+~cos~d2 = 5 (A.3) 
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where 5 is an arbitrary constant. Equation (A.2) is solved 
using the boundary conditions 

c=c,forn=Oandc=c,for~-+a~. 

Equation (A.3) is solved using the condition 
6 = 0 at t = 0 for all x. 

The result is: 

s = erfc{ide[coth(%)+cos(2x)])j. (A.4) 

The average mass-transfer coefficient, kL, is 

(A.5) 

where 

J(cothnt’+cosnx’)dx’dt’ (A.6) 

and a=%, T=+, and V,=(J2)V. (A.7) 
m 

The function F(a) is plotted in Fig. 1. For a > 0.85, F(a) = 
1+(0.44/a). 

APPENDIX B 

Unsteady Mass Transfer in Eddy Models (with Arbitrary, 
Time-Varying Length and Velocity Scales) 

It has been pointed out [24] that for a number of modi- 
fications stemming from the convective-diffusion equation 
for the roll cell, the local steady-state absorption flux across 
the surface of the eddy is approximately linear, having a 
maximum at the forward stagnation flow (x = 0) and a 
minimum at the reverse stagnation flow (x = L). The 
approximation of linearity is even more exact for unsteady 
absorption. The mass transfer analysis for an eddy with a 
time-varying length (L) and velocity (V) scale becomes 
mathematically tractable, then, by considering only the 
stagnation regions. 

At a stagnation flow, equation (A.l) becomes 

dc @Ydc_Dc 
dt T(t) dy dy’ (B.1) 

where j? = 1 when x = 0 and p E - 1 when x = L, and 
T(t) = L(t)/l/,(t). T(t) is the characteristic eddy time and is 
an arbitrary function of time. The initial and boundary 
conditions are as specified in equation (A.l). Equation (B.1) 
may be solved by the same similarity-solution technique 
of Appendix A to yield the local, time-dependent absorption 
flux 

i(t ; B) = (6 -cd 

The area-averaged &IX for the eddy is denoted’by j’(t) and 
is given by 

j’(t) =f[j(t;/l = l)+j(t;p = -l)]. (B.3) 

An estimate of kL based on this approximation is denoted 
by ki and is 

1 f.., 
kr = 

(c, -c*)texp 0 ’ Wdt. J ” 
(B.4) 

For the case where T is independent of time, kr is calculated 
from equation (B.4) to be 

where G(a) = d 1 {[1-exp(-2a~)]-“Z 
s 

+ [exp(2nn) - l]-“*} dq. (B.6) 

For finite a, G(a) z F(a)(F(a) differs from G(a) by less than 
16%, for example, for a 3 1) and as a + co, G(a) + F(a) + 1. 

APPENDIX C 

Derivation of Mass-Transfer Expressions for Decaying 
Turbulent Flow Downstream of a Grid 

The turbulence properties downstream of a grid vary with 
position as [3] 

112 
(C.1) 

(C-2) 

where Vs, the surface velocity, is the velocity with which the 
turbulence structure is convected down the channel, x is the 
distance downstream of the grid, and M is the mesh size. 
For the absorption process, 

x=xo+vst (C.3) 

where x0 is the distance upstream of the test section entrance 
at which the grid is located. From these three equations, 
V(t) and L(t) are obtained. Now j(r; b), as calculated from 
equation (B.2), is 

i(r;B) = (c,-cb) 

X 
D[2(t2+bt+a)“2+2t+b]2Bc Ii2 

0. 1 (C.4) 

‘[2($+b~+a)1!2+2~+b]z~cd~ ’ 
0 I 

where a, b and c are defined by 

(x,, - lOM)(x,, + 16M) 
a= 

K2 

2x,,+6M 
b=------ 

K 

c = 0.086(320)%. 

APPENDIX D 

Derivation of Mass-Transfer Expressions for 
Turbulent Liquid Jet Flow 

The turbulence properties vary along the length of the jet 
as shown in equations (18), (19), (21), and (22). These ex- 
pressions, in conjunction with equation (B.2) yield the 
stagnation flow mass fluxes, j,(t; fi) and jr(t; fi), for the initial 
and final period, respectively. 

i&i P) = (c, - 4 

I DV(x = 0)[2(42)xfl+ l] 

X (D.1) 

j&; B) = (c, - 4 

x 
(Dln)ex~[-pq,(t+q2)-"~1 

c2 + 

s 

exp[-~ql(t’+qz)-“4]dt’ 
f* 

where 
8(J2)nV(t*)L(t*)“’ 

41 = 
3(2n~)“~ 

Yz = 
Ut*Y t* 

2nv 

q3 = l+!L!?zcLt* 
L(x = 0) 

q4 = 
4(J2) w*)L(t*) 

3v 

c2 = 
L(x = o)(qyJz’^s+l- 1) 

V(x = 0) [2(J2)r$ + l]q:‘J2)“B exp@q.J 
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TRANSFERT DE MASSE TURBULENT A L’INTERFACE LIBRE 
LIQUIDE-GAZ, ET APPLICATION AU CAS D’UN CANAL DECOUVERT, 

DES ECOULEMENTS DE BULLES ET DES JETS 

R&sum&On discute l’absorption d’un gaz par un liquide turbulent en I’absence de cisaillement interlacial 

(impost: par le gaz). Le principal outil utilist: est I’analyse dimensionnelle. Deux rkgimes distincts de 
transfert de masse ont &tt: identifib, associB aux holutions turbulentes des tourbillons porteurs d’knergie 
et des tourbillons si8ge de la dissipation. On a obtenu des relations pour chacun des regimes et un critire 
bask sur le nombre de Reynolds de turbulence permet de dkterminer le domaine d’application de chaque 
relation. Le modkle de transfert de masse est appliquk g quatre configurations d’koulements pour lesquetles 

ou bien fes don&es turbulentes sont disponibles, ou bien elles peuvent Ltre estimks (&coulement en canal 

dkouvert avec ou sans turbulence de grille initiafe, kcoulement de bulles, jet turbulent). 

TURBULENTER STOFFAUSTAUSCH AN FREIEN 
GAS-FLtiSSIGKEITS-GRENZFLbiCHEN IN BEZUG AUF DIE ANWENDUNG IN 

OFFENEN KANb;LEN, BE1 BLASENSTROMUNG UND AN STRAHLEN 

Zusammenfassung-Die Absorption von Gasen in einer turbulenten Fliissigkeit bei Abwesenheit lul3erer 
(durch das Gas aufgezwungener) Grenzfllchenschubspannungen wird diskutiert. Es werden zwei Regime 
des Stoffaustausches unterschieden, ngmlich solche mit energieerhaltenden und solche mit energie- 
dissipierenden turbulenten StrSmungen. Es werden Beziehungen fiir beide Regime angegeben, ebenso 
ein Kriterium fiir die Abgrenzung, das auf der turbulenten ReZahl beruht. Das Stoffaustauschmodell 
wird fiir vier Strlimungsf8lle ausgewertet, fiir welche Turbulenzdaten entweder vorhanden oder abgeschatzt 
werden kiinnen (Strtimung im offenen Kanal mit und ohne Turbulenzgittem, BlasenstrSmung und 

TYPfiYBEHTHbII;I FIEPEHOC MACCbI HA CB060fiHOfi I7OBEPXHOCTM PA3AEJIA 
MEXAY I-A30M I4 XM&KOCTbtO IIPMMEHMTEnbHO K TEYEHMIO B OTKPbfTOM 

KAHAJIE, flY3bIPbKOBOMY M CTPYWHOMY TEYEHMIIM 

AtmoTaqtm - C noMowbto aHanM3a pasMepHocTeA paccMaTpesaeTcn npouecc a6cop6qaH ra3a 
Typ6yfleHTHblM nOTOKOM XWAKOCTMI llpll OTCyTCTBlrH BHeUJHerO (Bbl3LlBaeMOrO ra30M) KaCaTeJIbHOrO 

nanpnmenaa Ha rpaHflue pa3nena @a3. BblsBJIeHO Aea pa3nwiHbrX pewiMa nepeHoca Maccbr np~ 

Typ6yJIeHTHoM Te’ieHllH C AHcCkilIaUWZ~ H 6e3 AACCHnaUHH 3HCprWi. +!$I$4 KaIKAOrO PeXWMa BblBeAeHbl 

COOTHOUleHW5l W Ha OCHOBaHWM Typ6yJleHTHOrO WiCJia PefiHOnbACa OIlpeAeneH KpATepMfi IlpkiMeHH- 

MOCTH AaHHbiX OTHOUleHM~. npOaepKy MOAeflU IlepeHOCa MaCCbl IIpOf3eJlH Ha YeTblpeX BNAaX 

TeYeHHrt, AnS-i KOTOpblX HMeK)TCII NJlH MOxHO nOJIyWTb AaHHbIe fl0 Typ6yfleHTHOCTn (TeYeHlle a 

OTKPLITOM KaHaJIe npH HaJlWilNH M OTCyTCTBHH Ty~yAn3~py~m~X pel.lJeTOK, ny3blpbKOBOe TeYeHHe 

M c~pyl~oe Teqewe). 


